持続可能な開発のための教育(ESD)に配慮した PC 利用 - OpenBSD を利用したファイヤウォールの構築例-

伊藤陽介*

2005 年からユネスコによって持続可能な開発のための教育(ESD)が推進されている。 情報機器を長期間リユースし続けることによって ESD の目標の一つである環境の持続 性を保つための価値観と行動の変革の育成をねらい,本論文では,ESD に配慮した具 体的な教材例としてセキュリティを確保した上で PC をネットワーク機器の一種である ファイヤウォールとして利用することを提案する。OS を選定した結果,OpenBSD を採 用することとし,その構築方法と運用例について述べる。

[キーワード: ESD, OpenBSD, セキュリティ, ファイヤウォール]

1. はじめに

持続可能な開発のための教育(ESD)は 2002 年に日 本政府などが提唱し,2005 年にユネスコが ESD の主 導機関となり文部科学省も ESD を推進している[1]。 ESD を推進するため「持続可能な社会の創り手の育 成」が明記された学習指導要領が 2017 年に告示され た[2~4]。

一方, 国税庁は電子計算機のうちサーバ用を除く パーソナルコンピュータ(PC)の耐用年数を4年,そ の他のもの(PC 本体と分離されたディスプレイやプ リンタなど)の耐用年数を5年と規定している[5]。 そのため賃借契約で構築された情報システムは、4 年または5年が更新することが多い。一方, MM 総研 によれば 2019 年の PC の日本国内の出荷台数は 1,570,0 千台であると報告されている[6]。(一社)パ ソコン 3R 推進協会によれば 2019 年度に回収された PC は, 372.3 千台であり, その内リユース台数は 18.9 千台(5.1%)と報告されている[7]。同年の出荷 台数に対するリユース台数の割合は 2.4%と著しく低 い。回収された PC の再資源化処理の割合は高いもの の,情報化社会の進展と高度化によって使用される 情報機器は増加する一方であり、それらを製造した り再資源化処理する場合に発生したりする環境負荷 は増大している。

以上述べた状況などを考慮し,耐用年数を超えた り,利用ソフトウェアのサポートが切れたりしたこ とで廃棄するのではなく,長期間リユースし続ける ことによって ESD の目標の一つである環境の持続性 を保つための価値観と行動の変革の育成をねらう。 本論文では,ESD に配慮した具体的な教材例として, PC を長期間に渡ってセキュリティを確保した上で ネットワーク機器の一種であるファイヤウォールと して利用することを提案し,その構築方法と運用例 について述べる。

2. 教材例

2.1 ハードウェアの選定

本研究室で管理している PC のうち,正常に稼働し ているものの中で最も調達時期の早い PC を 2 台選定 した。以下,選定した PC を PC1 及び PC2 とする。各 PC の主な仕様を表 1 に示す。両 PC とも 1998 年に調 達後,現時点までに 22 年間経過している。そのため, 経年劣化の著しい FDD, HDD 及び光学式ドライブは当 初の部品から交換されている。また、メモリモ ジュールも調達時から交換,増設されている。

両 PC をネットワーク機器として利用するため, 1000Base-T に対応したネットワーク・インター フェースカード(NIC)を2枚 PCI バスに装着している。

2.2 ソフトウェアの選定

PC を安全なネットワーク機器として稼働させるためには、長期間のサポートが期待できるソフトウェアを選定し利用する必要がある。

2.2.1 OS

PC1 及び PC2 で動作する可能性のある OS として Linux 及び BSD 系 Unix を候補とした。

物理アドレス拡張(PAE)に対応していないインテル 系 32bit CPUで動作する Linux ディストリビューショ ンとして, Debian 10.4, ubutntu 18.04LTS, Linux

^{*} 鳴門教育大学大学院 高度学校教育実践専攻 自然・生活 系教科実践高度化コース(技術・工業・情報科教育実践分 野)

	PC1	PC2	
製品名	DELL System Workstation 400 M	DELL System OptiPlex GXi 5200M	
ケース	デスクトップ (W419×H165×D445mm)	デスクトップ (W419×H165×D445mm)	
マザーボード	チップセット:Intel i440FX	チップセット:Intel i430HX	
CPU	PentiumII 266MHz(32bit, L1 Cache 16KB, L2 Cache 512KB), CPU Family:6, Slot 1(242 ピン) 物理アドレス拡張(PAE):非対応	Pentium MMX 200MHz(32bit, L1 Cache 16KB), CPU Family:5, Socket 7(321 ピン) 物理アドレス拡張(PAE):非対応	
メモリ*	スロット数:4 規格:EDO DIMM ECC Unbuffered 168pin(3.3V) 実装容量:384Mバイト(最大:512Mバイト)	スロット数:4 規格:EDO DIMM ECC Unbuffered 168pin(3.3V) 実装容量:256Mバイト(最大:512Mバイト)	
FDD*	3.5インチ, 1.44MB	3.5インチ, 1.44MB	
HDD*	HGST HDT722525DLAT80(250GB, Ultra ATA133)	HGST HDT722525DLAT80(250GB, Ultra ATA133)	
光学式ドライブ*	MATSHITA SW-9583A(CD-R/RW, DVD-R/RWなど)	HL-DT-ST GSA-4167B(CD-R/RW, DVD-R/RW など)	
拡張カード [*] (PCI バス)	ビデオカード: Matrox Electronics Systems MGA 2164W NIC: Intel 82540EM (1000Base-T)×2 Millennium II NIC: Intel 82540EM (1000Base-T)×2 USB カード: USB2.0(3ポート)		
内蔵ビデオカード	なし	S3 Trio 64V+ 86c765	
内蔵 NIC	3Com 3c905 (100Base-TX)	なし	
USB	USB1.0×2	USB1. 0×2	
電源ユニット	230W	200W	
発売時期	1998 年	1998年	

表1 選定したハードウェアの主な仕様

*:製品調達時と異なる部品を示す。FDD:フロッピィディスクドライブ,HDD:ハードディスクドライブ

Minto 19.3 が提供され,各サポート期限は2023 年4 月とされている。しかし,各 Linux ディストリ ビューションのインストーラを書き込んだ DVD メ ディアを用いて PC1 にインストールを試みたが,イ ンストーラ起動直後にカーネルパニックとなり正常 に動作しないことが判明した。

っぎに、オープンソースかつ無償提供されている BSD 系 Unix として 32 ビット版の FreeBSD[8], NetBSD[9], OpenBSD[10]を候補とした。FreeBSD と NetBSD はそれぞれ利用のしやすさ、移植性などを目 標に開発されている。OpenBSD は NetBSD から分岐し て開発された経緯があり、特にセキュリティを重視 している点に特徴がある。FreeBSD と NetBSD のサ ポート期間は約5年間である。一方、表2に示すよ うに、最近リリースされた OpenBSD のサポート期間 は約1年間と短いが、約半年毎にリリースされる バージョンに更新を繰り返すことでサポート期間を 延長し続けることができる。

FreeBSD 12.1 のインストーラを書き込んだ DVD メ ディアを用いて PC1 にインストールすることを試み たが,インストーラ起動直後にカーネルパニックと なり正常に動作しないことが判明した。

また、NetBSD のメーリングリスト tech-kern によ れば、OpenBSD のプロジェクトの一環として開発さ れた堅牢性の高いネットワーク・パケット制御用ソ フトウェアの一種であるPacket Filter(pf)[11]のサ ポートを打ち切る内容の投稿が 2019 年 3 月にあった

表 2 OpenBSD のバージョン履歴(抜粋)

バージョン	リリース日	サポート期限
6.4	2018年10月18日	2019年10月17日
6.5	2019年4月24日	2020年5月19日
6.6	2019年10月17日	2020年10月18日
6.7	2020年5月19日	2021年5月
6.8	2020年10月18日	2021年10月

[12]。この理由により NetBSD を採用しないこととした。

OpenBSD 6.7 のインストーラを書き込んだ DVD メ ディアを用いて PC1 にインストールすることを試み たが、インストーラ起動直後にカーネルパニックと なり正常に動作しないことが判明した。Linux や FreeBSD と異なり、OpenBSD ではフロッピィディスク 用インストーラも提供されているため、それを用い たところ PC1 及び PC2 でインストーラを正常に起動 させることに成功した。インストーラ起動後、 OpenBSD のファイルセット配布用サーバからネット ワーク経由でインストールに必要なファイルを読み 込むことで完了した。

以上述べた結果から, PC1 及び PC2 で動作可能な OS として OpenBSD を採用し, 関連するソフトウェア を利用することとした。

2.2.2 ネットワーク・パケット制御用ソフトウェア

OpenBSD ではネットワーク・パケット制御用ソフ トウェアとして pf を利用する。pf はパケットフィル タリングやネットワーク・アドレス変換(NAT)を行う 機能などを備えている。

3. OpenBSD を利用したファイヤウォール

第2章で述べたPCを対象として OpenBSD を利用したファイヤウォールの構築と運用方法について述べる。

3.1 インストール方法

2.2.1節で述べたように OpenBSD は PC1 及び PC2 に インストールできた。以下に, OpenBSD 6.7のインス トール方法について述べる。

3.1.1 インストーラの準備

OpenBSD の Web ページ https://www.openbsd.org/f aq/faq4.html#Download にある「floppyXX.fs」の 「i386」を選択し、フロッピィディスク用インス トーラのイメージファイル「floppy67.fs」をダウン ロードする。ここで、「67」は、OpenBSD のバー ジョン「6.7」を意味する。なお、ミラーサイト(例 えば、http://ftp.riken.jp/pub/OpenBSD/6.7/i386 /)からイメージファイルをダウンロードしてもよい。

インストーラの起動時に用いるフロッピィディス クは, FDD を備えた Linux マシンを使って「floppy6 7. fs」を

dd if=floppy67.fs of=/dev/fd0 bs=1024 conv=syn c; sync

としてフロッピィディスクに書き込む。ここで、 「/dev/fd0」はFDDのデバイス名である。

3.1.2 インストール手順

PCI バスに 2 枚の NIC を装着しておき,インター ネット接続でき dhcp サービスを受けられるグローバ ル側ネットワークの NIC に LAN ケーブルを装着して おく。ここでは, Intel 製NICのドライバ(em)を用い た場合について述べる。以下,□で囲んだ文字は表 示結果を示す。網掛け文字は説明を表し実際に表示 される内容とは異なる。

3.1.1 節で述べた方法で準備したフロッピィディ スクを用いてインストーラを起動する。

Welcome to the OpenBSD/i386 6.7 insta		
llation program.		
(I)nstall, (U)pgrade, (A)utoinstall o		
r (S)hell?		
「I」を入力し,インストールを開始する。		
Choose your keyboard layout ('?' or		
`L' for list) [default]		
キーボードのレイアウト選択を日本語とするため		
「jp」を入力する。		
System hostname? (short form, e.g. `f		

00') 当該 PC につけるホスト名を入力する。 Available network interfaces are: em0 em1 vlan0. Which network interface do you wish c onfigure? (or `done')[em0] em0とem1の2つのNICが認識されている。デバイ ス名は NIC の種類によって異なる場合がある。ここ では、ネットワークインストールに用いる NIC とし て em0 を選択する。なお, em0 がインターネットに接 続されていない場合, eml を選択する。 IPv4 address for em0? (or 'dhcp' or `none') [dhcp] em0: IPv4アドレス lease accepted from dhcpサーバのIPv4とMACアドレス IPv6 address for em0? (or `autoconf' or `none') [none] 選択した NICの IPv4 アドレスは dhcp サーバを使っ て設定させ, IPv6 は使用しない。 Available network interface are: em0, em1 vlan0 Which network interface do you wish t o configure? (or `done') [done] Using DNS domainname ドメイン名 Using DNS nameservers DNSサーバのIPv4 アドレス Password for root account? (will not echo)

他の NIC を設定する必要がないので, done を選択 する。dhcp サーバから提供されたドメイン名と DNS サーバの情報が表示される。root アカウントのパス ワードを入力する。

```
Start sshd(8) by default? [yes]
Do you expect to run the X Window Sys
tem? [yes]
Do you want the X Window System to be
started by xenodm(1)? [no]
Setup a user? (enter a lower-case log
inname, or 'no') [no]
Since no user was setup, root logins
via sshd(8) might be usefull.
WARNING: root is targeted by password
guessing attacks, pubkeys are safer.
Allow root ssh login? (yes, no, prohi
bit-password) [no]
```

sshd の起動,X Window はインストールするが起動 時は利用しない。一般ユーザの設定なし,ssh によ る root ログインを不許可とする。なお,一般ユーザ の設定についてはインストール完了後に行う。

Available disks are: wd0. Which disk is the root disk? ('?' for details) [wd0]

利用可能なディスクとしてハードディスクのデバ イス名 wd0 が表示される。インストール対象とする デバイス名を wd0 とする。

Use (W)hole disk, use the (O)penBSD a

rea or (E)dit the MBR? [OpenBSD]w	Installing comp67.tgz •••
wd0 のパーティション情報が表示される。今回は	Installing man67.tgz •••
すべての領域を使用するため「w」を選択する。	Installing game67.tgz •••
Use (A)uto layout, (E)dit auto layou	Installing xbase67.tgz •••
t, or create (C)ustom layout? [a]	Installing xetc.tgz •••
自動でパーティションが作成された後、各パー	Installing xshare67.tgz •••
ティションがフォーマットされる	Extracting xetc.tgz •••
Which disk do you wish to initialize?	Installing xshare67.tgz •••
(or 'done') [done]	Installing xfont67.tgz •••
さらに初期化するディスクけたいため そのまま	Installing xserv67.tgz •••
ていなーモーな畑ナ	ミラーサーバからファイルセットがダウンロード
Lot(a install the sotal	された後 インストールされる かお 「・・・」
Location of sets? (cd0 disk http or	の如八に准性世辺なデナ文字列とファイルサイブな
'done') [cd0] http	の部分に進捗状況を小り文子列とファイルリイスな
HTTP proxy URL? (e.g. 'http://proxy:8	どか表示される。
080', or `none') [none] プロキシのURL	What timezone are you in? ('?' for li
HTTP Server? (hostname or 'done') 🗧	
ラーサーバのホスト名	ダイムソーンは日本とするため「Japan」と入力す
Server directory? [pub/OpenBSD/6.7/i3	る。
86]	Saving configuration files done.
ネットワークインストールするため「http」を選	Making all device nodes done.
択し, 必要に応じてプロキシの URL を入力し, ミ	done
ラーサーバのホスト名とディレクトリを設定する。	CONGRATULATIONS! Your OpenBSD install
日本国内のミラーサーバのホスト名として	has been successfully completed!
ftn jajst so jn や ftn rikon in わどが利田できる	When you login to your new system the
Ttp. Jarst. ac. jp 个 Ttp. Tikeli. jp 次 2 小 机用 C 2 3。	first time, please read your mail us
file name pattern or 'all' De-selec	ing the 'mail' command.
t sets by prepending a '-', e.q.: '-q	Exit to (S) nell, (H) alt or (R) eboot?
ame*'. Selected sets are labelled	【いフトールが空了後、フロッピュデュフクを取
`[X]′.	インハトールが元」後、ノロジビイノイハクを取
[X] bsd [X] comp67.tgz [X] x	り外し冉起動させる。
base67.tgz [X] xserv67.tgz	再起動後, root でログインし, ネットワークの設
[A] DSU.IU [A] Mano/.tgz [A] X share67 tgz	定を行う。
[X] base67.tgz [X] game67.tgz [X] x	/root/.profile
font67.tgz	に以下の環境変数を設定するスクリプトを追加する。
Set name(s)? (or 'abort' or 'done')	PROXYSV="プロキシのURI,"
[done]	export http_proxy=\$PROXYSV
ミラーサーバと通信後、ファイルセットの一覧が	export https_proxy=\$PROXYSV
表示される。すべてのファイルセットをインストー	export HTTP_PROXY=\$PROXYSV
ルする。	export HTTPS_PROXY=\$PROXYSV
Get/Verify SHA256.sig · · ·	デバイス名 emO の NIC に dhcp サーバから割り当て
Signature Verified	られるネットワーク情報を設定する場合,
Get/Verify bsd •••	/etc/hostname.em0
Get/Verify bsd.rd •••	というファイルに
Get/Verify base67.tgz •••	dhen
Get/Verify man67.tgz •••	いた
Get/Verify game67.tgz •••	
Get/Verify xbase67.tgz •••	デバイス名 eml の NIC に,IPv4 アドレスとネット
Get/Verify xshare67.tgz •••	マスクを設定する場合,
Get/Verify xfont67.tgz · · ·	/etc/hostname.em1
Get/Verify xserv67.tgz · · ·	に
Installing bsd •••	inet IPv4アドレス ネットマスク
Installing bsd.rd •••	な記述する
Installing base67.tgz •••	
Extracting etc.tgz ···	クートリエイの IPv4 / ドレスは,

/etc/mygate に記述する。

3.1.3 パッチの適用とパッケージの更新

インストールした OS に最新のパッチを適用し, パッケージを更新するため

syspatch

pkg_add -u

を実行した後、再起動する。

3.2 運用手順

3.2.1 OS のバージョンアップ

OS のバージョンアップを行う前に、最新のパッチ を適用し、各パッケージを更新しておく。

バージョンアップは,

sysupgrade

を実行することで、/etc/installurl に記述されて いるミラーサーバから必要なファイルがダウンロー ドされ, 自動的にインストールが行われる。さらに, tcpdump -n -e -ttt -i pflog0 カーネルの再リンク後、再起動がかかる。

3.2.2 OS の保守

定期的に OS の保守を行うため, 3.1.3 節で述べた パッチの適用とパッケージの更新を行う。

3.3 ファイヤウォールの構築

2.2.2 節で述べたネットワーク・パケット制御用 ソフトウェア pf を用いて,ファイヤウォールを構築 する。

ここで, em0 をグローバル側ネットワーク, em1 を ローカル側ネットワークとする。まず, IPv4 パケッ トのフォワーディングを有効にするため,

/etc/sysctl.conf

に

net.inet.ip.forwarding=1

を追記する。

パケットフィルタリングや IP マスカレードのルー ルは, /etc/pf.conf に記述する。このファイルは起 動時に読み込まれ反映される。

起動後, /etc/pf. conf を編集した場合

pfctl -f /etc/pf.conf

を実行して反映させることもできる。なお、ルール の文法チェックのみの場合

pfctl -nf /etc/pf.conf

とする。

pf は、以下に示す行単位で記述されたルールを始 めから順番に評価する。

action [direction] [log] [quick] [on interface]

[af] [proto protocol] [from src_addr [port src _port]] [to dst_addr [port dst_port]] [flags tc p flags] [state]

各ルールの記述方法については、参考文献[11]に 記載されているが、その一部を和訳し整理したもの を表3に示す。

pf ではマッチするルールがあってもそこで評価は 停止せず、最後にマッチしたルールが適用される。 ただし、quick をつけた場合にはそこで評価が終了 し、そのルールが適用される。どのルールにもマッ チしないパケットは, すべて通過してしまうので, そうならないようにルールを記述しなければならな l'

pf のログは, /var/log/pflog に書き込まれるが, テキストファイルでないため,

tcpdump -n -e -ttt -r /var/log/pflog

として表示する。また、リアルタイムでログを表示 する場合

を実行する。

例えば、ローカル側の em1 からグローバル側の em0 に、IPマスカレードして通信するルールは、以下のよ うに記述する。ここで「¥」は継続行を示す。

set skip on lo		
block return		
pass		
match out on emO inet Y		
from ローカル側のネットワークアドレス ¥		
nat-to (em0)		

さらに,許可する tcp 及び udp のポート番号を考慮 したルール例を表4に示す。グローバル側及びローカ ル側の各 NIC に対応するデバイス名, ローカル側ネッ トワークアドレス,許可する tcp 及び udp のポート番 号をサービス名または数値の集合をそれぞれ変数に代 入し、各ルールの記述時に用いる。ルールの役割は表 4内にコメントで記載している。

また, X Window を startx コマンドで起動後, ネッ トワークプロトコルアナライザである wireshark[13] を利用すると、より細かいネットワーク・パケットの 状態も把握できる。

3.4 ファイヤウォールの運用例

PC1とPC2にOpenBSD 6.7をインストールし、表4に 示したルールを用いたファイヤウォールを2020年5月 に構築し、24時間稼働を開始した。当初、Realtek 製 NICを利用していたところ「watchdog timeout」が頻発 したため、すべて Intel 製 NIC に交換した。その後、 OpenBSD 6.8 にバージョンアップしたが、問題なく稼 働している。

PC1 と PC2 に iperf3[14]をインストールし,通信速 度を実測したところ,それぞれ 80Mbps,31Mbps 程度で あった。32 ビット PCI バスに装着した 1000Base-T 対応 の NIC が備える性能と比較するとかなり処理能力は劣 るが,インターネット利用であれば実用上問題のない レベルで通信できると判断している。

4. まとめ

本論文では,ESD に配慮した具体的な教材例とし て,約22年前に調達したPCにOpenBSDをインストー ルし,長期間に渡ってセキュリティを確保した上で ファイヤウォールとして実際に利用できることを示 した。

FDD やフロッピィディスク, IDE 接続のハードディ

表3 pfによるルール設定(払

文法	設定内容
action (必須)	通信を許可するときは「pass」,通信を許可しパラメータを設定するときは「match」,拒否するときは 「block」と記述する。「match」の場合,最後に一致したルールではなく,ルールが一致するたびにパラ メータが設定される。「match」は,nat-to,binat-to,rdr-to,scrubとともに使う。「block」の場合,さ らにオプションをつけて「block drop」とすると,何も返信せず拒否し,「block return」とすると,TCPで あれば TCP RST パケットを返信し,ICMP であれば ICMP Unreachable パケットを返信する。
direction	入ってくる通信に対するルールのときは「in」,出ていく通信に対するルールのときは「out」と記述する。何も記述しなかった場合,入ってくる通信と出ていく通信の両方に対するルールとなる。
log	ログをとる場合「log」と記述する。
quick	当該ルール以降に記述されたルールを適用しない場合「quick」と記述する。すなわち、この時点でルールの評価が終了し、当該ルールが適用される。
on interface	ルールを適用するネットワークインターフェースのデバイス名またはグループ名を「on」の次に記述する。 グループ名の「any」を使って、「on any」と記述すると、すべてのネットワークインターフェースのデバ イスが対象となる。
af	address family の略である。IPv4 のみに適用する場合「inet」と記述し, IPv6 のみに適用する場合「inet6」と記述する。何も記述しない場合, IP アドレスの指定について限定することはない。
proto protocol	ルールを適用するプロトコルを記述する。プロトコルとして, tcp, udp, icmp, icmp6 などがある。
from src_addr [port src_port]] [to dst_addr [port dst_port]	src_addr は送信元アドレス、dst_addr は送信先アドレスを指定する。単一の IPv4 または IPv6 アドレスを記述したり, IPv4 または IPv6 アドレス群を記述したりできる。ネットワークデバイス名に「:network」を付けると、そのネットワークアドレスとなる。ネットワークデバイス名に「:bradcast」を付けると、そのネットワークのブロードキャストアドレスとなる。すべてのアドレスの場合「any」を記述する。「!」を付けると論理否定を意味する。「all」は「from any to any」と同じ意味になる。 src_port は送信元ポート番号、dst_port は送信先ポート番号を指定する。1~65535 の番号やサービスの名称 (例 ssh) を記述できる。関係演算子「!=、<、、<=、>=など」を使ってポート番号の範囲を示す。
flags tcp_flags	proto tcp を使用する場合に, TCP ヘッダにセットされているべきフラグを指定する。このフラグは, flags check/mask として指定される。
state	パケットがこのルールにマッチした場合,状態の情報を保持するかどうかを指定する。「keep state」と記述すると,TCP,UDPおよびICMPに対して有効である。「modulate state」と記述すると,TCPに対してのみ 有効となる。「synproxy state」と記述すると,詐称されたTCP SYN floodからサーバを防護するため,着 信する TCP 接続のプロキシを行う。このオプションは,keep stateおよび modulate stateの機能を含んで いる。

表4 ファイヤウォールのルール例

ext_if = "em0"	# グローバル側NICのデバイス名	
int_if = "eml"	# ローカル側NICのデバイス名	
<pre>int_net = \$int_if:network</pre>	# ローカル側ネットワークアドレス	
services_tcp="{ ssh, auth, ntp, smtp, smtps, imaps, www, https }" # 許可するtcpのポート番号の定義		
services_udp="{ domain, nt	p, https }" # 許可するudpのポート番号の定義	
set skip on lo0	# ループバックインタフェースはフィルター対象外	
set block-policy drop	# ブロックしたパケットに対して何も返さない。	
match in all scrub (no-df)	# パケットの正規化	
block in log all	# 全てのパケットをブロック	
block out all		
block in quick inet6 all	# IPv6はすべてブロック	
antispoof quick for { lo0, \$ext_if, \$int_if } # 詐称されたパケットはブロック		
match out on \$ext_if inet from \$int_net nat-to (\$ext_if) # IPマスカレード		
pass in on \$int_if proto	tcp from \$int_net to any port \$services_tcp modulate state	
pass out on \$ext_if proto	tcp from \$ext_if to any port \$services_tcp modulate state	
pass in on \$int_if proto udp from \$int_net to any port \$services_udp modulate state		
pass out on Sext_11 proto	udp irom sext_ii to any port services_udp modulate state	
pass in on \$int_if proto	1cmp from \$int_net to \$int_if keep state # ローカル側からのICMPを通う。	

スクなど、現在では入手困難な部品があり、新規に OpenBSD をインストールすることが難しい状況と なっている。将来的にフロッピィディスクを使わな くても OpenBSD をインストールできるように、今回 OpenBSDを構築した HDD のクローンやイメージファイ ルを作成しておく必要がある。

レアメタルなど様々な資源と多大なエネルギーを 利用して製造された情報機器を長期間リユースし続 けるという取り組みは、持続可能な社会を目指す一 歩になると考えられる。ESD の目標の一つである環 境の持続性を保つための価値観と行動の変革を育成 するために、今後はPC のファイヤウォール以外の利 用時の教材化についても模索していく予定である。

参考文献

- [1] 文部科学省(2018) ESD(持続可能な開発のための教育)推進の手引,国際統括官付,日本ユネスコ国内委員会,https://www.mext.go.jp/unesco/004/__icsFiles/afieldfile/2018/07/05/1405507_01_2.pdf(最終アクセス日:2021年2月1日).
- [2] 文部科学省(2017) 小学校学習指導要領(平成2 9 年告示), https://www.mext.go.jp/content/ 1413522_001.pdf (最終アクセス日:2021年2 月1日).
- [3] 文部科学省(2017) 中学校学習指導要領(平成2 9 年告示), https://www.mext.go.jp/content/ 1413522_002.pdf (最終アクセス日:2021年2 月1日).
- [4] 文部科学省(2018) 高等学校学習指導要領(平成 30 年告示), https://www.mext.go.jp/content /1384661_6_1_3.pdf(最終アクセス日:2021年 2月1日).

- [5] 国税庁(2020) 減価償却資産の耐用年数等に関する省令の別表,別表第一 機械及び装置以外の有形減価償却資産の耐用年数表,令和二年三月三一日財務省令第二六号,https://elaws.e-gov.go.jp/document?lawid=340M50000040015 (最終アクセス日:2021年1月29日).
- [6] 株式会社 MM 総研(2020) 2019 年暦年国内パソコン出荷概要, https://www.m2ri.jp/release/de tail.html?id=399(最終アクセス日:2021年2月1日).
- [7] (一社)パソコン 3R 推進協会(2020) 2019 年度の パソコンメーカーによる使用済パソコンの回収 再資源化実績は 372.3 千台, https://www.pc3 r. jp/topics/200804.html(最終アクセス日:2 021年2月1日).
- [8] The FreeBSD project, https://www.freebsd.o rg/(最終アクセス日:2021年2月4日).
- [9] The NetBSD project, https://www.netbsd.org/(最終アクセス日:2021年2月4日).
- [10] The OpenBSD project, https://www.openbsd.o rg/(最終アクセス日:2021年2月4日).
- [11] OpenBSD PF User's Guide, https://www.ope nbsd.org/faq/pf/(最終アクセス日:2021年2 月4日).
- [12] M. Villard(2019) Removing PF, NetBSD Maili ng Lists, tech-kern, http://mail-index.net bsd.org/tech-kern/2019/03/29/msg024883.htm 1 (最終アクセス日:2021年2月4日).
- [13] The Wireshark Foundation(2021) Wireshark, https://www.wireshark.org/ (最終アクセス 日:2021年2月15日).
- [14] ESnet(2020) iperf3, https://software.es.ne t/iperf/(最終アクセス日:2021年2月15日).