干渉 SAR 処理における残存軌道位相の除去方法と ソフトウェアへの組み込み

伊藤陽介*

合成開ロレーダ(SAR)による地球観測では、季節や時刻、雲などによる影響が少ないため安定した結果を期待できる。とくに、SARによる観測値に含まれる位相の差をとる干渉 SAR は微細な地形変動を面的に捉えることができる有用な技術となっている。干渉 SAR 処理において発生する軌道誤差に起因する残存軌道位相は、画像全体に対して影響を及ぼし、地形変動量の推定時や地形変動パターンを判読する際に特に問題となる。本論文では、干渉 SAR における基線長に対する補正値に基づく軌道位相の変化量を示す数式を示すとともに、残存軌道位相の除去方法を提案した。さらに、本方法を干渉 SAR 処理ソフトウェアに組み込む方法を述べるとともに、人工衛星搭載型 SAR を用いた干渉 SAR 処理例から残存軌道位相を除去した画像を示しその効果を明らかにした。

[キーワード:合成開ロレーダ,干渉 SAR,軌道位相,基線長]

1. はじめに

電波を用いた能動型センサの一種である合成開口レー ダ(SAR)による地球観測では、季節や時刻、雲などによる 影響が少ないため安定した結果を期待できる。一般研究 用として利用可能な人工衛星搭載型 SAR は、1978 年の SEASAT (米国)から始まり、1990 年代から日本やヨーロッ パ宇宙機関(ESA)、カナダ宇宙局(CSA)などによって様々 な SAR が人工衛星に搭載され運用されてきた^[11]。2010 年 代には、ストリップに加え、スキャン、多偏波、スポッ トライトなどの様々な観測モードを備えた高解像度な SAR が人工衛星に搭載され活発に利用されている。現在、SAR は地球環境をより精密に把握できる重要なセンサの一つ となっている。

SAR のアンテナから放射されたパルス状の電波は観測 対象物で散乱し、その一部が同じアンテナで受信された 後、相関処理などを経て高解像度化された SAR 画像とな る。SAR 画像のアジマス方向の分解能はアンテナ長の半 分であり、レンジ方向の分解能はパルスの帯域幅の逆数 となり、波長や観測対象までの距離に無関係であるとい う特長をもつ。そのため、人工衛星の飛行する高度から であっても SAR による観測では高分解能な画像を得るこ とができる^[2]。なお、アジマス方向とレンジ方向は、それ ぞれ、SARの進行方向と電波を放射する方向に対応する。

一方, SAR で用いるパルス状の電波は, 位相がそろった 状態でアンテナから放射されるため受信した信号の位相 も観測情報として利用できる。干渉 SAR は, この位相の 変化を用いて地形の標高や変化, 潮流などを捉える技術

抽出する。干渉 SAR の方式には大別して, SAR が移動する
 る方向に2つのアンテナを一定の距離で配置し観測する
 アロングトラック方式と, 電波の照射方向に二つのアン
 テナを一定の距離で配置し観測するクロストラック方式
 がある^[3]。
 本論文では, 地震や火山活動, 地盤沈下, 地滑りなど
 による微細な地形変動を面的に捉えることを目的とし,
 ロー地域を繰り返し観測するクロストラック方式

であり、同一地域を異なる位置にあるアンテナから2回

観測し、両画像間の位相の差をとることで必要な情報を

同一地域を繰り返し観測するクロストラック方式の干渉 SARについて取り扱う。干渉SARで得られる位相差には, 観測誤差,軌道誤差,電離層誤差,大気遅延誤差,標高 誤差などが含まれる。観測誤差はランダムに発生するた め,位相差を平均して一定の誤差以内に抑え込む。軌道 誤差は人工衛星の軌道位置の誤差に起因するものであり, 軌道と基線長を再推定することで補正する。電離層誤差 と大気遅延誤差は,電離層と大気による電波の屈折によっ て生じる伝搬経路長の変化に起因するものであり,一般 に補正は困難である。標高誤差は二つのアンテナ間の距 離である基線長の垂直成分と標高の誤差に起因するが, 位相差に表れる影響は少ない^[4]。

前述した5つの誤差のうち,軌道誤差に起因する残存 軌道位相は、画像全体に対して影響を及ぼし、地形変動 量の推定時や地形変動パターンを判読する際に特に問題 となる。参考文献[4]に述べられているように、捉えたい 地形変動量の精度と同程度の精度で基線長を推定しなけ ればならない。そのため精密な軌道位置情報が提供され ていない人工衛星の場合、軌道誤差に起因する残存軌道 位相を除去する必要がある。GPS などによって軌道位置 を高精度に計測できる機能を備えた最近の人工衛星で あっても,残存軌道位相を除去が必要な場合がある。

これまで,標高が既知の地上基準点(GCP)や海岸などと 位相アンラッピングした初期干渉位相を対応させて基線 長を補正する方法や2回の観測期間中に地表変動がない とされる地域に対してディジタル標高モデル(DEM)を用い てシミュレートされた干渉位相と実際に生成された干渉 位相を対応させる方法などが提案され,残存軌道位相の 除去がなされてきた^[5, 6, 7]。

これらの方法が述べられた参考文献には、具体的に干 渉 SAR 処理ソフトウェアに残存軌道位相の除去処理を組 み込む場合に必要な数式や手順が明らかとされていない。 そのため本論文では、参考文献[7]に示された基線長の補 正モデルに着目し、基線長に対する補正値に基づく軌道 位相の変化量を示し、GCPを用いない残存軌道位相の除 去方法について述べる。さらに、干渉 SAR 処理ソフトウェ アへの組み込み方法と干渉 SAR 処理例から残存軌道位相 の除去効果を示す。

2. 干渉 SAR による位相差とその誤差

図1にクロストラック方式の干渉 SAR における二つの アンテナと観測対象地点の幾何学的位置関係を示す。図 2に観測対象地点が観測期間中に変位した場合の位置関 係を示す。干渉 SAR によって求められる位相差は、ス レーブの電波伝搬経路長($\rho + \delta \rho$)からマスタの電波伝搬 経路長 ρ の往復分を引き算し、角度(ラジアン)に換算し た

$$\phi = \frac{4\pi}{\lambda} \delta \rho \tag{1}$$

である。ここで, λは真空中における電波の波長を表す。

観測対象地点 P_t の楕円体高をh,マスタとスレーブの電 波の入射角を θ_{im} , θ_{is} とし,観測時における屈折率をそれ ぞれ n_m , n_s とする。

干渉 SAR による位相差φは、主に平行基線長B_↓によって生じる軌道位相

$$\phi_o = -\frac{4\pi}{\lambda} n_m B_{\parallel},\tag{2}$$

主に楕円体高と垂直基線長B」によって生じる地形位相

$$\phi_t = -\frac{4\pi}{\lambda} B_\perp \frac{h}{\rho \sin\theta_{im}},\tag{3}$$

主に観測対象地点の変動によって生じる変動位相

$$\phi_d = -\frac{4\pi}{\lambda} n_m d, \tag{4}$$

スレーブの電波伝搬経路長と観測時の屈折率の変化に よって生じる屈折位相

$$\phi_n = -\frac{4\pi}{\lambda} (\rho + \delta \rho) \left(\frac{n_m}{n_s} - 1 \right), \tag{5}$$

および, ノイズεを含み,

 $\phi = \phi_o + \phi_t + \phi_d + \phi_n + \varepsilon$ (6) と表される。

ここで、平行基線長
$$B_{\parallel}$$
と垂直基線長 B_{\perp} を $B_{\parallel} = B \sin(\theta - \alpha),$ (7)

$$B_{\perp} = B\cos(\theta - \alpha) \tag{8}$$

と定義する。ここで、基線長Bはマスタとスレーブのアン テナ間距離を示し「正」のみの値であり、 θ と α は、それ ぞれ、オフナディア角と基線傾斜角を示す。 B_{\parallel} の符号は P_m から P_t の方向を正とし、 B_{\perp} の符号は $\theta_{im} > \theta_{is}$ のとき正 とする。

マスタとスレーブの SAR 生データから位相情報を保持 した SLC(Single Look Complex) 画像 C_m , C_s をそれぞれ生 成し, 観測誤差を抑えるために小領域毎に演算 $arg((C_m \cdot$

 C_s^*))を適用し、対応する初期位相差 ψ を求める。ここで、 *は複素共役、()は平均処理、arg関数は複素数の偏角を 求める関数を示す。なお、 ψ の値は $(-\pi,\pi]$ の範囲となる。 ψ から ϕ_o 、 ϕ_t 、 ϕ_n を取り除き、 ϕ_d を求めた結果に位相ア ンラッピング処理^[8]を施し、式(4)を用いて視線方向の変 動量dを推定する。しかし、軌道位置や楕円体高、屈折率 に誤差があると、 ψ に軌道誤差、標高誤差、電離層誤差、 大気遅延誤差が含まれ、変動量の推定値に誤差を生じる。 本論文では第1章で述べたように軌道誤差に起因する位 相除去のみに着目するため、以降、 $n_m = n_s = 1$ と仮定す る。

3. 残存軌道位相の除去方法

3.1 残存軌道位相の除去に係る前処理

残存軌道位相を除去する前処理では、まず DEM を用い てマスタの SAR 画像をシミュレートし、生成された SLC 画像の強度との面積相関により、アジマス方向とレンジ 方向の位置ずれを推定する。その結果を用いて両方向の 観測時刻を補正しておく。

3.2 基線長の補正値と軌道位相の関係式

まず,式(2)に示した軌道位相 ϕ_o は,アジマス方向の時刻 刻tと電波伝搬経路長 ρ によって変化するため, $\phi_o(t,\rho)$ と 表記する。基線長Bと基線傾斜角 α は、 ρ には無関係であ るが、tによって変化するため、それぞれ $B(t), \alpha(t)$ と表 記する。平行基線長 B_{\parallel} と垂直基線長 B_{\perp} は、アジマス方向 の時刻tとオフナディア角 θ によって変化するため、それ ぞれ $B_{\parallel}(t,\theta), B_{\perp}(t,\theta)$ と表記する。 また,基準となるアジマス時刻と電波伝搬経路長をそ れぞれ t_0 , ρ_0 とし, $\Delta t = t - t_0$, $\Delta \rho = \rho - \rho_0$ とする。アジ マス時刻 t_0 ,電波伝搬経路長 ρ_0 において $\phi_o(t,\rho)$ をテイ ラーの公式の2次項までを用いて近似すると,式(9)を得 る。ここで, θ_0 は ρ_0 に対するオフナディア角を表す。

平行基線長と垂直基線長の推定値と推定誤差をそれぞ れ $\hat{B}_{\mu}(t,\theta), \hat{B}_{\mu}(t,\theta), \Lambda B_{\mu}(t,\theta), \Lambda B_{\mu}(t,\theta)$ とすると

$$B_{\parallel}(t,\theta) = \hat{B}_{\parallel}(t,\theta) + \Delta B_{\parallel}(t,\theta)$$
(10)

$$B_{\perp}(t,\theta) = \hat{B}_{\perp}(t,\theta) + \Delta B_{\perp}(t,\theta)$$
(11)

であり、両基線長の推定誤差によって生じる軌道位相の 誤差 $\Delta \phi_a(t, \rho)$ は、式(12)となる。

水平基線長 $B_h = B \cos \alpha$ と鉛直基線長 $B_v = B \sin \alpha$ は 図3に示すように定義され、観測対象地点の位置に無関 係な値である。両者ともオフナディア角にも無関係であ りマスタとスレーブのアンテナの位置関係のみで表現で きるため基線長の誤差をモデル化する場合に適している

図3 水平基線長B_hと鉛直基線長B_vの定義

$$\begin{split} \phi_{o}(t,\rho) \approx \\ &-\frac{4\pi}{\lambda} \Biggl\{ B_{\parallel}(t_{0},\theta_{0}) + \Delta t \left. \frac{\partial B_{\parallel}(t,\theta)}{\partial t} \right|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} + \Delta \rho B_{\perp}(t_{0},\theta_{0}) \frac{\partial \theta}{\partial \rho} \Biggr|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \\ &+ \frac{\Delta t^{2}}{2} \frac{\partial^{2} B_{\parallel}(t,\theta)}{\partial t^{2}} \Biggr|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} + \Delta t \Delta \rho \left(\frac{\partial B_{\perp}(t,\theta)}{\partial t} \Biggr|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} \frac{\partial \theta}{\partial \rho} \Biggr|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} + B_{\perp}(t_{0},\theta_{0}) \frac{\partial^{2} \theta}{\partial t\rho} \Biggr|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \Biggr\} \\ &+ \frac{\Delta \rho^{2}}{2} \Biggl(-B_{\parallel}(t_{0},\theta_{0}) \frac{\partial \theta}{\partial \rho} \Biggr|_{\substack{t=t_{0}\\ t=t_{0}}}^{2} + B_{\perp}(t_{0},\theta_{0}) \frac{\partial^{2} \theta}{\partial \rho^{2}} \Biggr|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \Biggr) \Biggr\}$$
(9)

$$-\frac{4\pi}{\lambda} \left\{ \Delta B_{\parallel}(t_{0},\theta_{0}) + \Delta t \frac{\partial \Delta B_{\parallel}(t,\theta)}{\partial t} \Big|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} + \Delta \rho \Delta B_{\perp}(t_{0},\theta_{0}) \frac{\partial \theta}{\partial \rho} \Big|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \right. \\ \left. + \frac{\Delta t^{2}}{2} \frac{\partial^{2} \Delta B_{\parallel}(t,\theta)}{\partial t^{2}} \Big|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} + \Delta t \Delta \rho \left(\frac{\partial \Delta B_{\perp}(t,\theta)}{\partial t} \Big|_{\substack{t=t_{0}\\ \theta=\theta_{0}}} \frac{\partial \theta}{\partial \rho} \Big|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} + \Delta B_{\perp}(t_{0},\theta_{0}) \frac{\partial^{2} \theta}{\partial t^{2} \rho} \Big|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \right) \\ \left. + \frac{\Delta \rho^{2}}{2} \left(-\Delta B_{\parallel}(t_{0},\theta_{0}) \frac{\partial \theta}{\partial \rho} \Big|_{\substack{t=t_{0}\\ \rho=\rho_{0}}}^{2} + \Delta B_{\perp}(t_{0},\theta_{0}) \frac{\partial^{2} \theta}{\partial \rho^{2}} \Big|_{\substack{t=t_{0}\\ \rho=\rho_{0}}} \right) \right\}$$
(12)

No. 12 (2015)

 $\Delta \phi_o(t,\rho) =$

^[7]。アジマス方向の時刻tにおける水平基線長と鉛直基線 長の推定誤差をそれぞれ $\Delta B_h(t)$, $\Delta B_v(t)$ とすると

 $\Delta B_{\parallel}(t,\theta) = \sin \theta \cdot \Delta B_{h}(t) - \cos \theta \cdot \Delta B_{v}(t) \quad (13)$ $\Delta B_{\perp}(t,\theta) = \cos \theta \cdot \Delta B_{h}(t) + \sin \theta \cdot \Delta B_{v}(t) \quad (14)$ であり、これらを式(12)に代入し、式(15)を得る。

つぎに,水平基線長と鉛直基線長の各推定誤差を1次 式

$$\Delta B_h(t) = \Delta B_{h0} + \Delta B_{h1} \Delta t$$
(16)
$$\Delta B_v(t) = \Delta B_{v0} + \Delta B_{v1} \Delta t$$
(17)

でモデル化する。ここで、 ΔB_{h0} 、 ΔB_{h1} 、 ΔB_{v0} 、 ΔB_{v1} は基 線長の補正値である。さらに、オフナディア角に及ぼす アジマス方向の変化を考慮した電波伝搬経路長の関係か ら

 $\theta = s_0 + s_1 \Delta t + s_2 \Delta \rho + s_3 \Delta \rho^2 + s_4 \Delta t \Delta \rho$ (18) と近似する。ここで、 $s_k, k = 1, \cdots, 4$ は定数である。式(16)、 (17)、(18)より

$$\begin{split} \frac{\partial \Delta B_h(t)}{\partial t} \Big|_{t=t_0} &= \Delta B_{h1}, \ \frac{\partial^2 \Delta B_h(t)}{\partial t^2} \Big|_{t=t_0} = 0, \\ \frac{\partial \Delta B_v(t)}{\partial t} \Big|_{t=t_0} &= \Delta B_{v1}, \ \frac{\partial^2 \Delta B_v(t)}{\partial t^2} \Big|_{t=t_0} = 0, \\ \frac{\partial \theta}{\partial t} \Big|_{\substack{t=t_0\\\rho=\rho_0}} &= s_1, \ \frac{\partial^2 \theta}{\partial t^2} \Big|_{\substack{t=t_0\\\rho=\rho_0}} = 0, \\ \frac{\partial \theta}{\partial \rho} \Big|_{\substack{t=t_0\\\rho=\rho_0}} &= s_2, \ \frac{\partial^2 \theta}{\partial \rho^2} \Big|_{\substack{t=t_0\\\rho=\rho_0}} = 2s_3, \end{split}$$

 $\frac{\partial^2 \theta}{\partial t \partial \rho}\Big|_{\substack{t=t_0 \ \rho=\rho_0}} = s_4$ である。これらの式を式(15)に代入し,整理すると

$$\begin{split} \Delta\phi_o(t,\rho) &= -\frac{4\pi}{\lambda} (L_0 \Delta B_{h0} + L_1 \Delta B_{h1} \\ &+ M_0 \Delta B_{\nu 0} + M_1 \Delta B_{\nu 1}) \end{split} \tag{19} \\ \& \forall z \mathcal{Z}_\circ \quad \exists \exists \mathcal{C}, \ L_0, \ L_1, \ M_0, \ M_1 \forall t, \ \mathcal{Z}h\mathcal{Z}h \\ &L_0 &= \left\{ 1 - \frac{1}{2} (s_1 \Delta t + s_2 \Delta \rho)^2 \right\} \sin \theta_0 \end{split}$$

$$+(s_1\Delta t + s_2\Delta\rho + s_3\Delta\rho^2 + s_4\Delta t\Delta\rho)\cos\theta_0 \quad (20)$$

$$L_1 = \Delta t\sin\theta_0 + (s_1\Delta t + s_2\Delta\rho)\Delta t\cos\theta_0 \quad (21)$$

$$M_0 = (s_1\Delta t + s_2\Delta\rho + s_3\Delta\rho^2 + s_4\Delta t\Delta\rho)\sin\theta_0$$

$$-\left\{1-\frac{1}{2}(s_1\Delta t+s_2\Delta\rho)^2\right\}\cos\theta_0\tag{22}$$

 $M_1 = (s_1 \Delta t + s_2 \Delta \rho) \Delta t \sin \theta_0 - \Delta t \cos \theta_0 \qquad (23)$ (23)

3.3 残存軌道位相の除去手順

まず、SLC画像において基準となるアジマス時刻 t_0 を観 測開始から終了までの中点時刻とし、基準となる電波伝 搬経路長 ρ_0 を時刻 t_0 における最短経路長と最長経路長の 平均値とする。補正前の軌道位置情報を用いて式(18)に 含まれる定数 s_k , $k = 1, \cdots, 4$ を最小二乗法により推定し、 オフナディア角の近似式を得る。つぎに、初期位相差 ψ か

$$\begin{split} \Delta\phi_{0}(t,\rho) &= -\frac{4\pi}{\lambda} \Biggl[\sin\theta_{0} \cdot \Delta B_{h}(t_{0}) - \cos\theta_{0} \cdot \Delta B_{\nu}(t_{0}) \\ &+ \Delta t \left(\sin\theta_{0} \cdot \frac{\partial \Delta B_{h}(t)}{\partial t} \Big|_{t=t_{0}} + \cos\theta_{0} \cdot \Delta B_{h}(t_{0}) \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} - \cos\theta_{0} \cdot \frac{\partial \Delta B_{\nu}(t)}{\partial t} \Big|_{t=t_{0}} + \sin\theta_{0} \cdot \Delta B_{\nu}(t_{0}) \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} \right) \\ &+ \Delta\rho(\cos\theta_{0} \cdot \Delta B_{h}(t_{0}) + \sin\theta_{0} \cdot \Delta B_{\nu}(t_{0})) \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} \\ &+ \frac{\Delta t^{2}}{2} \Biggl\{ \sin\theta_{0} \cdot \frac{\partial^{2} \Delta B_{h}(t)}{\partial t^{2}} \Big|_{t=t_{0}} + 2\cos\theta_{0} \cdot \frac{\partial \Delta B_{\nu}(t)}{\partial t} \Big|_{t=t_{0}} \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} + \Delta B_{h}(t_{0}) \left(-\sin\theta_{0} \cdot \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{2} + \cos\theta_{0} \cdot \frac{\partial^{2} \theta}{\partial t^{2}} \Big|_{t=t_{0}} \right) \\ &- \cos\theta_{0} \cdot \frac{\partial^{2} \Delta B_{\nu}(t)}{\partial t^{2}} \Big|_{t=t_{0}} + 2\sin\theta_{0} \cdot \frac{\partial \Delta B_{\nu}(t)}{\partial t} \Big|_{t=t_{0}} \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} + \Delta B_{\nu}(t_{0}) \left(\cos\theta_{0} \cdot \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{2} + \sin\theta_{0} \cdot \frac{\partial^{2} \theta}{\partial t^{2}} \Big|_{t=t_{0}} \right) \Biggr\} \\ &+ \Delta t \Delta \rho \left(\cos\theta_{0} \cdot \frac{\partial \Delta B_{\mu}(t)}{\partial t} \Big|_{t=t_{0}} - \sin\theta_{0} \cdot \Delta B_{h}(t_{0}) \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} + \sin\theta_{0} \cdot \frac{\partial \Delta B_{\nu}(t_{0})}{\partial t} \Big|_{t=t_{0}} + \cos\theta_{0} \cdot \Delta B_{\nu}(t_{0}) \frac{\partial \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} \right) \Biggr\} \\ &+ \Delta t \Delta \rho \left(\cos\theta_{0} \cdot \Delta B_{h}(t_{0}) + \sin\theta_{0} \cdot \Delta B_{\nu}(t_{0}) \right) \frac{\partial^{2} \theta}{\partial t} \Big|_{t=t_{0}}^{t=t_{0}} \\ &+ \frac{\Delta \rho^{2}}{2} \left(\cos\theta_{0} \cdot \Delta B_{h}(t_{0}) + \sin\theta_{0} \cdot \Delta B_{\nu}(t_{0}) \right) \frac{\partial^{2} \theta}{\partial \rho^{2}} \Big|_{t=t_{0}}^{t=t_{0}} \right) \Biggr$$

鳴門教育大学情報教育ジャーナル

ら補正前の軌道位置情報から求めた軌道位相 ϕ_o と地形位 相 ϕ_t をそれぞれ除去する。マスタとスレーブの観測期間 中に変動がなかったと仮定できる地域に対して位相アン ラッピング処理を施し,残存軌道位相とオフセット量 η_0 , ノイズ ε を含む

$$\Delta \eta = \Delta \phi_o - \frac{4\pi}{\lambda} \eta_0 + \varepsilon \tag{24}$$

を得る。

適用領域の条件例として、コヒーレンスが約0.3以上、 海域を含む場合は海面の楕円体面よりも数m程度高い地 域とする。適用領域内にあるアジマス方向の時刻 t_i , i =1,…, n_t , マスタの電波伝搬経路長 ρ_j , $j = 1, ..., n_\rho$ におい て $\Delta\eta$ に対応する値を $\Delta\eta_{ij}$ とする。一方、 t_i , $i = 1, ..., n_t$ と ρ_j , $j = 1, ..., n_\rho$ の各画素に対して、式(20)から(23)を用い て $L_{0,ij}$, $L_{1,ij}$, $M_{0,ij}$, $M_{1,ij}$ を求める。

残存軌道位相に一様に加算される ΔB_{\parallel} に起因する残存 位相成分は変動位相の判読に影響しないため,一旦, $\eta_0 =$ 0と仮定して,式(24)に最小二乗法を適用し,基線長に対 する各補正値 ΔB_{h0} , ΔB_{h1} , ΔB_{v0} , ΔB_{v1} を求める。これら の補正値を適用した基線を用いて,改めて軌道位相と地 形位相を求め,初期位相差から除去する。この結果,レ ンジ方向に残存位相成分が2次式で近似できるようなパ ターンが現れた場合,最初に戻り式(24)に最小二乗法を 適用し,各補正値 ΔB_{h0} , ΔB_{h1} , ΔB_{v0} , ΔB_{v1} , および, η_0 を求める。以上述べた処理を行い基線長の補正量が規定 値以下となるまで繰り返す。

本方法は,基線長の誤差以外の要因による残存位相を 分離することなく補正値を推定するため,必ずしも正確 な基線長に対応する補正値とならない場合がある。

なお、位相アンラッピングにおける観測誤差の影響を 可能な限り避けるために、アジマス方向とレンジ方向の マルチルック数は、最終的に生成する変動位相のマルチ ルック数の2~4倍程度とする。また、軌道位置誤差が大 きい場合、初回の地形位相の除去を適用しない方がよい 場合がある。

4. 干渉 SAR 処理ソフトウェアへの組み込み

本論文では、干渉 SAR の教育分野への啓発や普及をね らい無償提供かつオープンソースである干渉 SAR 処理ソ フトウェアを用いる。この要件を満たすソフトウェアと して、DORIS^[10]、GMTSAR^[11]、RAT^[12]、ROI_PAC^[13]などがイ ンターネットを介して入手可能である。これらのソフト ウェアは、いずれも残存軌道位相の除去機能を備えてい ないため精密な軌道位置情報が提供されていない SAR を 利用できない。

これらのソフトウェアに対してカスタマイズの容易性 を検討した結果,主に C++で記述され,様々な処理内容 No. 12 (2015)

図 4 干渉 SAR 処理の流れ

や設定項目を簡単なキーワードとパラメータで指定できる DORIS を用いることとした。DORIS はオランダの Delft 工科大学からオープンソースで配布され,非営利目的の 場合無償で利用できる^[14]。

マスタとスレーブの軌道位置情報とSLC画像,および, 観測対象地域を含む DEM の入手後,変動位相を生成する までの干渉 SAR 処理の流れを図4に示す。基線長に対す る補正値の推定処理は、点線枠の処理内に組み込まれて いる。ここで、位相アンラッピングを処理するためのソ フトウェアとして SNAPHU^[15, 16]を DORIS から呼び出して 用いる。

5. 干涉 SAR 処理例

第5章では、教育研究用途で利用できる SAR のうち、 その入手性や経済性などを考慮し、表1に示す日本の SAR によって観測されたデータを用いた干渉 SAR 処理例を示 す。

JERS-1・SAR による干渉処理では、表1に示したよう に軌道位置精度が低いため、常に残存軌道位相の除去処 理を必要とする。一方、ALOS・PALSAR では高精度軌道情 報が提供され、その精度が高いときは残存軌道位相の除 去処理を適用しなくてもよい場合がある。

図4と図5は、それぞれ1995年兵庫県南部地震と1995 年北サハリンの地震の発生前後に観測されたJERS-1・SAR を用いた干渉 SAR 処理例である。各図(a)と(b)は、それ ぞれ残存軌道位相の除去処理前、処理後の画像である。 基線長の補正値の推定回数は、両者とも2回である。図 4の残存軌道位相は図5と比較して細かく、ほとんど変 動位相が判別できなくなっている。この主な要因は式(12) に示すように垂直基線長の誤差が大きいためである。残 存軌道位相を除去した両画像とも明瞭に変動位相が現れ ている。

つぎに、図6と図7にALOS・PALSARを用いた干渉SAR 処理例を示す。図6は観測期間中に地形変動がない場合 であり、図7は2007年新潟県中越沖地震による地形変動 がある場合である。各図(a)と(b)は、それぞれ残存軌道 位相の除去処理前、処理後の画像である。基線長の補正 値の推定回数は、両者とも1回である。JERS-1・SAR と 比較して ALOS・PALSAR は軌道位置精度が良いため各図 (a)に現れる残存軌道位相は緩慢なものとなっている。図 6(b)に示された位相は、主に標高に関連する水蒸気によ る大気遅延誤差に起因するものであると考えられる。図 7(a)、(b)とも明瞭な変動位相を判別できるが、残存軌道 位相がアジマス方向に緩く表れていたものが同図(b)では ほぼ除去できている。

6. まとめ

本論文では、干渉 SAR における基線長に対する補正値 に基づく軌道位相の変化量を示す数式を示し、基線長を 1 次関数で補正するモデルを用いて残存軌道位相を除去 する方法を提案した。さらに、本方法を干渉 SAR 処理ソ フトウェアに組み込む方法を述べるとともに、干渉 SAR 処理例から残存軌道位相を除去した画像を示し、その効 果を明らかにした。

今後,残存軌道位相の除去に加え,大気遅延による残存位相に関して DEM を用いて除去する機能を干渉 SAR 処理ソフトウェアに組み込む予定である。

表1 日本の人工衛星搭載型 SAR

名 称	JERS-1	ALOS
打ち上げ日	1992年 2月11日	2006年1月24日
運用終了日	1998年10月22日	2011年5月12日
センサ名	SAR	PALSAR
レーダ波長	23.5cm	23.6cm
観測モード	ストリップ	ストリップ(FBS, FBD)
		スキャン、多偏波
オフナディア角	35°	$8^{\circ} \sim 60^{\circ}$
	180m(アジマス方	0.4m(高精度軌道情
軌道位置精度	向)	報)
	50m(レンジ方向)	10m(RARR決定値)

謝辞

本研究の一部は科学研究費(基盤研究(C) 26381213)の 助成による。JAXA による陸域観測技術衛星研究公募(RA-4)に基づく ALOS-2 データ利用公募型共同研究の一環と して SAR データの提供を受けた。また,JERS-1・SAR デー タの一部は,産業技術総合研究所から提供を受けた。

参考文献

- [1] 日本写真測量学会編(1998):合成開ロレーダ画像ハ ンドブック, pp.2-22, 朝倉書店
- [2] 日本リモートセンシング学会編(2011):基礎からわ かるリモートセンシング, pp. 255-279, 理工図書
- [3] F. M. Henderson, A. J. Lewis(1998): Principles and Applications of Imaging Radar, Manual of Remote Sensing, Vol.2, John Wiley & Sons, pp. 359-380
- [4] 地震調査委員会(2011):合成開口レーダーによる地 震活動に関連する地殻変動観測手法について、文部 科学省地震調査研究推進本部、p.8、http://www.j ishin.go.jp/main/eisei/eisei_gaiyo.pdf(最終ア クセス日:2015年3月3日)
- [5] H. A. Zebker, P. A. Rosen, R. M. Goldstein, A. Gabriel, C. L. Werner (1994): On the derivation of coseismic displacement fields using differential radar interferometry; The Landers earthquake, Journal of Geophysical Research, Vol. 99, pp. 19617-19634
- [6] (財) 資源・環境観測解析センター(2003):地球観測 データからの情報抽出, pp. 246-258,(財) 資源・環 境観測解析センター
- [7] 藤原智,飛田幹男,村上亮,中川弘之,P.A. Rosen (1999):干渉 SAR における地表変動検出精度 向上のための基線値推定法と大気-標高補正,測地 学会誌,第45巻,第4号,pp.315-325
- [8] D. C. Ghiglia, M. D. Pritt(1998): Two-Dimensional Phase Unwrapping, John Wiley & Sons, pp. 1-30

- [9] 新居浩,武市朋彦,伊藤陽介(2013):干渉 SAR の教 育利用に関する調査,鳴門教育大学情報教育ジャー ナル,第10号, pp.15-19
- [10] B. M. Kampes, R. F. Hanssen, Z. Perski(2003): Radar interferometry with public domain tools, The 3rd International Workshop on ERS SAR Interferometry, p. 6
- [11] D. Sandwell, R. Mellors, X. Tong, M. Wei, P. Wessel(2011): GMTSAR: An InSAR processing system based on Generic Mapping Tools, University of California, San Diego, Scripps Institution of Oceanography, http://topex. ucsd.edu/gmtsar/tar/GMTSAR.pdf (最終アクセス 日:2015年3月8日)
- [12] A. Reigber, O. Hellwich(2004): RAT (Radar tools): A free SAR image analysis software package, Proceedings of 5th European Conference on Synthetic Aperture Radar, pp. 997-1000 (2004)
- [13] P. A. Rosen, S. Henley, G. Peltzer, M. Simons (2004): Updated repeat orbit interferometry package released, EOS, Transactions American

Geo-physical Union, Vol.85, No.5, p.47, http://onlinelibrary.wiley.com/doi/10.1029/20 04E0050004/pdf(最終アクセス日:2015年3月8日)

- [14] Delft Institute of Earth Observation and Space Systems, Delft University of Technology (2008): Delft object-oriented radar interferometric software user's manual and technical documentation, Ver. 4. 02, http://doris.tudelft. nl/software/doris_v4. 02.pdf(最終アクセス日: 2015年3月8日)
- [15] C. W. Chen, H. A. Zebker(2002): Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, Vol.40, pp.1709-1719
- [16] Stanford Radar Interferometry Research Group (2003): SNAPHU: Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping, http://web.stanford.edu/group/radar/software andlinks/sw/snaphu/(最終アクセス日:2015 年 3 月 8 日)

図4 兵庫県南部地震(発生日:1995年1月17日, M7.3)の干渉 SAR 画像(人工衛星: JERS-1, センサ: SAR, 降交軌道, マスタ観測日:1992年9月9日, スレーブ観測日:1995年2月6日)

図5 北サハリンの地震(発生日:1995年5月28日, M7.8)の干渉 SAR 画像(人工衛星: JERS-1, センサ: SAR, 降交軌道, マスタ観測日:1995年4月28日, スレーブ観測日:1995年6月11日)

図 6 地形変動がない徳島県北部の干渉 SAR 画像(人工衛星:ALOS,センサ:PALSAR,降交軌道,観測 モード:FBS,オフナディア角:34.3°,マスタ観測日:2007 年9月30日,スレーブ観測日: 2007 年11月15日)

図7 新潟県中越沖地震(発生日:2007年7月16日, M6.8)の干渉 SAR 画像(人工衛星:ALOS, センサ: PALSAR, 降交軌道, 観測モード:FBS, オフナディア角:34.3°, マスタ観測日:2007年1月16 日, スレーブ観測日:2007年7月19日)